Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
G3 (Bethesda) ; 11(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33772307

RESUMO

The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three-century-long domestication history of strawberry, we reconstructed the genealogy as deeply as possible-pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying an exclusion analysis to array-genotyped single-nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the past 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation), but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations, and shed light on forces that have shaped phenotypic diversity in F. × ananassa.


Assuntos
Domesticação , Fragaria , Fragaria/genética , Hibridização Genética , Melhoramento Vegetal
3.
BMC Genomics ; 20(1): 701, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500583

RESUMO

BACKGROUND: The ability to accurately and comprehensively identify genomic variations is critical for plant studies utilizing high-throughput sequencing. Most bioinformatics tools for processing next-generation sequencing data were originally developed and tested in human studies, raising questions as to their efficacy for plant research. A detailed evaluation of the entire variant calling pipeline, including alignment, variant calling, variant filtering, and imputation was performed on different programs using both simulated and real plant genomic datasets. RESULTS: A comparison of SOAP2, Bowtie2, and BWA-MEM found that BWA-MEM was consistently able to align the most reads with high accuracy, whereas Bowtie2 had the highest overall accuracy. Comparative results of GATK HaplotypCaller versus SAMtools mpileup indicated that the choice of variant caller affected precision and recall differentially depending on the levels of diversity, sequence coverage and genome complexity. A cross-reference experiment of S. lycopersicum and S. pennellii reference genomes revealed the inadequacy of single reference genome for variant discovery that includes distantly-related plant individuals. Machine-learning-based variant filtering strategy outperformed the traditional hard-cutoff strategy resulting in higher number of true positive variants and fewer false positive variants. A 2-step imputation method, which utilized a set of high-confidence SNPs as the reference panel, showed up to 60% higher accuracy than direct LD-based imputation. CONCLUSIONS: Programs in the variant discovery pipeline have different performance on plant genomic dataset. Choice of the programs is subjected to the goal of the study and available resources. This study serves as an important guiding information for plant biologists utilizing next-generation sequencing data for diversity characterization and crop improvement.


Assuntos
Variação Genética , Genômica/métodos , Benchmarking , Bases de Dados Genéticas , Genoma de Planta/genética
4.
BMC Genomics ; 20(1): 41, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642244

RESUMO

BACKGROUND: The apomictic reproductive mode of Brachiaria (syn. Urochloa) forage species allows breeders to faithfully propagate heterozygous genotypes through seed over multiple generations. In Brachiaria, reproductive mode segregates as single dominant locus, the apospory-specific genomic region (ASGR). The AGSR has been mapped to an area of reduced recombination on Brachiaria decumbens chromosome 5. A primer pair designed within ASGR-BABY BOOM-like (BBML), the candidate gene for the parthenogenesis component of apomixis in Pennisetum squamulatum, was diagnostic for reproductive mode in the closely related species B. ruziziensis, B. brizantha, and B. decumbens. In this study, we used a mapping population of the distantly related commercial species B. humidicola to map the ASGR and test for conservation of ASGR-BBML sequences across Brachiaria species. RESULTS: Dense genetic maps were constructed for the maternal and paternal genomes of a hexaploid (2n = 6x = 36) B. humidicola F1 mapping population (n = 102) using genotyping-by-sequencing, simple sequence repeat, amplified fragment length polymorphism, and transcriptome derived single nucleotide polymorphism markers. Comparative genomics with Setaria italica provided confirmation for x = 6 as the base chromosome number of B. humidicola. High resolution molecular karyotyping indicated that the six homologous chromosomes of the sexual female parent paired at random, whereas preferential pairing of subgenomes was observed in the apomictic male parent. Furthermore, evidence for compensated aneuploidy was found in the apomictic parent, with only five homologous linkage groups identified for chromosome 5 and seven homologous linkage groups of chromosome 6. The ASGR mapped to B. humidicola chromosome 1, a region syntenic with chromosomes 1 and 7 of S. italica. The ASGR-BBML specific PCR product cosegregated with the ASGR in the F1 mapping population, despite its location on a different carrier chromosome than B. decumbens. CONCLUSIONS: The first dense molecular maps of B. humidicola provide strong support for cytogenetic evidence indicating a base chromosome number of six in this species. Furthermore, these results show conservation of the ASGR across the Paniceae in different chromosomal backgrounds and support postulation of the ASGR-BBML as candidate genes for the parthenogenesis component of apomixis.


Assuntos
Apomixia , Brachiaria/genética , Mapeamento Cromossômico , Partenogênese/genética , Cromossomos de Plantas , Genômica , Cariotipagem , Translocação Genética
5.
Bioinformatics ; 33(14): 2224-2225, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369214

RESUMO

MOTIVATION: Genotyping by sequencing (GBS) generates datasets that are challenging to handle by current genetic mapping software with graphical interface. Geneticists need new user-friendly computer programs that can analyze GBS data on desktop computers. This requires improvements in computation efficiency, both in terms of speed and use of random-access memory (RAM). RESULTS: MapDisto v.2.0 is a user-friendly computer program for construction of genetic linkage maps. It includes several new major features: (i) handling of very large genotyping datasets like the ones generated by GBS; (ii) direct importation and conversion of Variant Call Format (VCF) files; (iii) detection of linkage, i.e. construction of linkage groups in case of segregation distortion; (iv) data imputation on VCF files using a new approach, called LB-Impute. Features i to iv operate through inclusion of new Java modules that are used transparently by MapDisto; (v) QTL detection via a new R/qtl graphical interface. AVAILABILITY AND IMPLEMENTATION: The program is available free of charge at mapdisto.free.fr. CONTACT: mapdisto@gmail.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapeamento Cromossômico/métodos , Ligação Genética , Genômica/métodos , Software , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos
6.
G3 (Bethesda) ; 7(6): 1913-1926, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450374

RESUMO

Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe a set of 1879 rice NAM lines created through the selfing and single-seed descent of F1 hybrids derived from elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica alleles were captured at every queried locus despite the presence of segregation distortion factors. Several distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and multi-point genetic map calculations, our datasets achieved the ∼1500 cM expected map size in rice. Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the 10 populations, by confirming known QTL locations for the trait days to heading.


Assuntos
Mapeamento Cromossômico , Estudos de Associação Genética , Oryza/genética , Cruzamentos Genéticos , Bases de Dados de Ácidos Nucleicos , Frequência do Gene , Ligação Genética , Variação Genética , Genética Populacional , Genótipo , Oryza/classificação , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Recombinação Genética
7.
Sci Adv ; 2(10): e1600991, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819048

RESUMO

Sex determination in maize involves the production of staminate and pistillate florets from an initially bisexual floral meristem. Pistil elimination in staminate florets requires jasmonic acid signaling, and functional pistils are protected by the action of the silkless 1 (sk1) gene. The sk1 gene was identified and found to encode a previously uncharacterized family 1 uridine diphosphate glycosyltransferase that localized to the plant peroxisomes. Constitutive expression of an sk1 transgene protected all pistils in the plant, causing complete feminization, a gain-of-function phenotype that operates by blocking the accumulation of jasmonates. The segregation of an sk1 transgene was used to effectively control the production of pistillate and staminate inflorescences in maize plants.


Assuntos
Glicosiltransferases , Inflorescência , Peroxissomos , Proteínas de Plantas , Zea mays , Ciclopentanos/metabolismo , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Inflorescência/enzimologia , Inflorescência/genética , Oxilipinas/metabolismo , Peroxissomos/enzimologia , Peroxissomos/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Zea mays/enzimologia , Zea mays/genética
8.
Plant J ; 87(5): 472-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27197779

RESUMO

The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Xanthomonas/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Genetics ; 203(3): 1117-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206716

RESUMO

Apomixis, asexual reproduction through seed, enables breeders to identify and faithfully propagate superior heterozygous genotypes by seed without the disadvantages of vegetative propagation or the expense and complexity of hybrid seed production. The availability of new tools such as genotyping by sequencing and bioinformatics pipelines for species lacking reference genomes now makes the construction of dense maps possible in apomictic species, despite complications including polyploidy, multisomic inheritance, self-incompatibility, and high levels of heterozygosity. In this study, we developed saturated linkage maps for the maternal and paternal genomes of an interspecific Brachiaria ruziziensis (R. Germ. and C. M. Evrard) × B. decumbens Stapf. F1 mapping population in order to identify markers linked to apomixis. High-resolution molecular karyotyping and comparative genomics with Setaria italica (L.) P. Beauv provided conclusive evidence for segmental allopolyploidy in B. decumbens, with strong preferential pairing of homologs across the genome and multisomic segregation relatively more common in chromosome 8. The apospory-specific genomic region (ASGR) was mapped to a region of reduced recombination on B. decumbens chromosome 5. The Pennisetum squamulatum (L.) R.Br. PsASGR-BABY BOOM-like (psASGR-BBML)-specific primer pair p779/p780 was in perfect linkage with the ASGR in the F1 mapping population and diagnostic for reproductive mode in a diversity panel of known sexual and apomict Brachiaria (Trin.) Griseb. and P. maximum Jacq. germplasm accessions and cultivars. These findings indicate that ASGR-BBML gene sequences are highly conserved across the Paniceae and add further support for the postulation of the ASGR-BBML as candidate genes for the apomictic function of parthenogenesis.


Assuntos
Brachiaria/genética , Cromossomos de Plantas/genética , Ligação Genética , Partenogênese/genética , Reprodução Assexuada/genética , Apomixia/genética , Proteínas de Arabidopsis/genética , Brachiaria/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Polimorfismo de Nucleotídeo Único , Poliploidia , Sementes/genética , Fatores de Transcrição/genética
10.
Front Microbiol ; 7: 573, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199910

RESUMO

The dearth of new antibiotics in the face of widespread antimicrobial resistance makes developing innovative strategies for discovering new antibiotics critical for the future management of infectious disease. Understanding the genetics and evolution of antibiotic producers will help guide the discovery and bioengineering of novel antibiotics. We discovered an isolate in Alaskan boreal forest soil that had broad antimicrobial activity. We elucidated the corresponding antimicrobial natural products and sequenced the genome of this isolate, designated Streptomyces sp. 2AW. This strain illustrates the chemical virtuosity typical of the Streptomyces genus, producing cycloheximide as well as two other biosynthetically unrelated antibiotics, neutramycin, and hygromycin A. Combining bioinformatic and chemical analyses, we identified the gene clusters responsible for antibiotic production. Interestingly, 2AW appears dissimilar from other cycloheximide producers in that the gene encoding the polyketide synthase resides on a separate part of the chromosome from the genes responsible for tailoring cycloheximide-specific modifications. This gene arrangement and our phylogenetic analyses of the gene products suggest that 2AW holds an evolutionarily ancestral lineage of the cycloheximide pathway. Our analyses support the hypothesis that the 2AW glutaramide gene cluster is basal to the lineage wherein cycloheximide production diverged from other glutarimide antibiotics. This study illustrates the power of combining modern biochemical and genomic analyses to gain insight into the evolution of antibiotic-producing microorganisms.

11.
Plant Biotechnol J ; 14(11): 2168-2175, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27154282

RESUMO

Wide crosses have been used for decades as a method for transferring novel genetic material and traits in plant breeding. Historically, many products of wide crosses require tedious and inefficient surgical embryo rescue prior to embryo abortion to recover single plantlets. We have utilized transgenic switchgrass (Panicum virgatum L. cv Alamo) as a pollen donor in conjunction with antibiotic or herbicide selection for recovery of intra-and interspecific F1 crosses by using developing ovules from the female parent and selecting for embryogenic cultures derived from the in situ immature embryo. Using this approach, several intravarietial crosses were generated between transgenic Alamo and the switchgrass varieties Kanlow, Blackwell and Cave-in-Rock as well as an interspecific cross with Atlantic coastal panicgrass. This procedure selected F1 embryogenic callus produced from the developing embryo contained within isolated immature ovules. Several clonal plants were successfully regenerated from each cross. Southern blot, PCR, phenotypic analyses and genomic analysis confirmed F1 hybrids. Using genotyping-by-sequencing shows the hybridization of the recovered plants by determining the ratio of transgressive markers to total compared markers between parents and their potential offspring. The ratio of transgressive markers to total compared markers was significantly lower between parents and their predicted offspring than between parents and offspring unrelated to them. This approach provides the possibility to move useful transgenes into varieties that are recalcitrant to direct transformation which can be optionally segregated thus useful to create new hybrids, as well as recovery of wide crosses that are either difficult or impossible using traditional techniques.


Assuntos
Panicum/genética , Plantas Geneticamente Modificadas/genética , Cruzamento , Cruzamentos Genéticos , Genótipo , Hibridização Genética , Panicum/embriologia , Plantas Geneticamente Modificadas/fisiologia
12.
Genetics ; 202(2): 487-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715670

RESUMO

Low-coverage next-generation sequencing methodologies are routinely employed to genotype large populations. Missing data in these populations manifest both as missing markers and markers with incomplete allele recovery. False homozygous calls at heterozygous sites resulting from incomplete allele recovery confound many existing imputation algorithms. These types of systematic errors can be minimized by incorporating depth-of-sequencing read coverage into the imputation algorithm. Accordingly, we developed Low-Coverage Biallelic Impute (LB-Impute) to resolve missing data issues. LB-Impute uses a hidden Markov model that incorporates marker read coverage to determine variable emission probabilities. Robust, highly accurate imputation results were reliably obtained with LB-Impute, even at extremely low (<1×) average per-marker coverage. This finding will have implications for the design of genotype imputation algorithms in the future. LB-Impute is publicly available on GitHub at https://github.com/dellaporta-laboratory/LB-Impute.


Assuntos
Alelos , Genética Populacional , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Algoritmos , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Cadeias de Markov , Plantas/genética , Reprodutibilidade dos Testes , Treinamento por Simulação
13.
Plant Genome ; 8(2): eplantgenome2015.01.0001, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228322

RESUMO

Switchgrass (Panicum virgatum L.) and its relatives are regarded as top bioenergy crop candidates; however, one critical barrier is the introduction of useful genetic diversity and the development of new cultivars and hybrids. Combining genomes from related cultivars and species provides an opportunity to introduce new traits. In switchgrass, a breeding advantage would be achieved by combining the genomes of intervarietal ecotypes or interspecific hybrids. The recovery of wide crosses, however, is often tedious and may involve complicated embryo rescue and numerous backcrosses. Here, we demonstrate a straightforward approach to wide crosses involving the use of a selectable transgene for recovery of interspecific [P. virgatum cv. Alamo × Panicum amarum Ell. var amarulum or Atlantic Coastal Panicgrass (ACP)] F1 hybrids followed by backcrossing to generate a nontransgenic admixture population. A nontransgenic herbicide-sensitive (HbS) admixture population of 83 F1 BC1 progeny was analyzed by genotyping-by-sequencing (GBS) to characterize local ancestry, parental contribution, and patterns of recombination. These results demonstrate a widely applicable breeding strategy that makes use of transgenic selectable resistance to identify and recover true hybrids.

14.
BMC Genomics ; 15: 979, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406744

RESUMO

BACKGROUND: Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. RESULTS: A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F2 population resulting from a B73×Country Gentleman test cross. CONCLUSIONS: This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Zea mays/genética , Composição de Bases/genética , Pareamento de Bases/genética , Simulação por Computador , Cruzamentos Genéticos , Bases de Dados Genéticas , Genética Populacional , Genômica , Metilação , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Mapeamento por Restrição
15.
Eur J Hum Genet ; 22(4): 551-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24002163

RESUMO

Toll-like receptor 1, when dimerized with Toll-like receptor 2, is a cell surface receptor that, upon recognition of bacterial lipoproteins, activates the innate immune system. Variants in TLR1 associate with the risk of a variety of medical conditions and diseases, including sepsis, leprosy, tuberculosis, and others. The foremost of these is rs5743618 c.2079T>G(p.(Ile602Ser)), the derived allele of which is associated with reduced risk of sepsis, leprosy, and other diseases. Interestingly, 602Ser, which shows signatures of selection, inhibits TLR1 surface trafficking and subsequent activation of NFκB upon recognition of a ligand. This suggests that reduced TLR1 activity may be beneficial for human health. To better understand TLR1 variation and its link to human health, we have typed all 7 high-frequency missense variants (>5% in at least one population) along with 17 other variants in and around TLR1 in 2548 individuals from 56 populations from around the globe. We have also found additional signatures of selection on missense variants not associated with rs5743618, suggesting that there may be multiple functional alleles under positive selection in this gene.


Assuntos
Haplótipos , Receptor 1 Toll-Like/genética , Alelos , Loci Gênicos , Humanos , Desequilíbrio de Ligação , Mutação de Sentido Incorreto , NF-kappa B/genética , NF-kappa B/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular , Seleção Genética
16.
Biol Psychiatry ; 74(12): 879-89, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23510579

RESUMO

BACKGROUND: Variation at the serotonin transporter gene, SLC6A4, has been associated with a variety of neuropsychiatric disorders and could be involved in other health-related phenotypes. METHODS: To determine the extent of variation at SLC6A4, we genotyped 23 markers on approximately 2500 individuals from 47 global populations, including the promoter variable number tandem repeat (VNTR) and 2 single nucleotide polymorphisms (SNPs) immediately flanking its variable region (rs25531 and rs25532), the intron 2 VNTR, and 19 additional SNPs. RESULTS: We observed several rare alleles at the promoter VNTR (some novel) and population-specific distributions of the reported functional SNPs rs25531, rs25532, and rs6355, as well as two alleles at the intron 2 VNTR. Alleles of interest at the VNTRs occurred on specific haplotype backgrounds. The repeat-number variants at the promoter VNTR and the intron 2 VNTR, as well as the putative functional SNPs, showed ethnic variation in frequencies. The more common alleles at the VNTR polymorphisms show wide geographic distributions, whereas rare alleles at both show more restricted distributions. The derived alleles at the two functional SNPs in the promoter VNTR show restricted distributions and occur primarily on different repeat number alleles. CONCLUSIONS: Our findings illustrate significant variation worldwide at SLC6A4 and that the functionally implicated alleles at the SNPs rs25531, rs25532, and rs6355 occur on limited haplotypes and vary significantly in global distribution. Association studies at SLC6A4 cannot a priori extrapolate across populations and should account for the multiple polymorphisms with possible functional variation across this locus, rather than focusing solely on one or two polymorphisms as commonly seen.


Assuntos
Depressão/genética , Frequência do Gene , Repetições Minissatélites/genética , Polimorfismo de Nucleotídeo Único , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Genética Populacional , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação
17.
G3 (Bethesda) ; 2(2): 279-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22384406

RESUMO

Basal cell carcinomas (BCCs) are the most common cancers in the United States. The histologic appearance distinguishes several subtypes, each of which can have a different biologic behavior. In this study, global miRNA expression was quantified by high-throughput sequencing in nodular BCCs, a subtype that is slow growing, and infiltrative BCCs, aggressive tumors that extend through the dermis and invade structures such as cutaneous nerves. Principal components analysis correctly classified seven of eight infiltrative tumors on the basis of miRNA expression. The remaining tumor, on pathology review, contained a mixture of nodular and infiltrative elements. Nodular tumors did not cluster tightly, likely reflecting broader histopathologic diversity in this class, but trended toward forming a group separate from infiltrative BCCs. Quantitative polymerase chain reaction assays were developed for six of the miRNAs that showed significant differences between the BCC subtypes, and five of these six were validated in a replication set of four infiltrative and three nodular tumors. The expression level of miR-183, a miRNA that inhibits invasion and metastasis in several types of malignancies, was consistently lower in infiltrative than nodular tumors and could be one element underlying the difference in invasiveness. These results represent the first miRNA profiling study in BCCs and demonstrate that miRNA gene expression may be involved in tumor pathogenesis and particularly in determining the aggressiveness of these malignancies.

18.
Science ; 328(5975): 232-5, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20299548

RESUMO

Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses, nuclear factor kappaB (p65), were mapped in 10 lymphoblastoid cell lines, and 25 and 7.5% of the respective binding regions were found to differ between individuals. Binding differences were frequently associated with single-nucleotide polymorphisms and genomic structural variants, and these differences were often correlated with differences in gene expression, suggesting functional consequences of binding variation. Furthermore, comparing PolII binding between humans and chimpanzee suggests extensive divergence in TF binding. Our results indicate that many differences in individuals and species occur at the level of TF binding, and they provide insight into the genetic events responsible for these differences.


Assuntos
Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , RNA Polimerase II/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Variações do Número de Cópias de DNA , DNA Intergênico , Feminino , Humanos , Masculino , Pan troglodytes/genética , Ligação Proteica , RNA Polimerase II/genética , Análise de Sequência de DNA , Especificidade da Espécie , Fator de Transcrição RelA/genética , Sítio de Iniciação de Transcrição
19.
Genes Dev ; 23(5): 575-88, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270158

RESUMO

Neuronal differentiation is a complex process that involves a plethora of regulatory steps. To identify transcription factors that influence neuronal differentiation we developed a high throughput screen using embryonic stem (ES) cells. Seven-hundred human transcription factor clones were stably introduced into mouse ES (mES) cells and screened for their ability to induce neuronal differentiation of mES cells. Twenty-four factors that are capable of inducing neuronal differentiation were identified, including four known effectors of neuronal differentiation, 11 factors with limited evidence of involvement in regulating neuronal differentiation, and nine novel factors. One transcription factor, Oct-2, was studied in detail and found to be a bifunctional regulator: It can either repress or induce neuronal differentiation, depending on the particular isoform. Ectopic expression experiments demonstrate that isoform Oct-2.4 represses neuronal differentiation, whereas Oct-2.2 activates neuron formation. Consistent with a role in neuronal differentiation, Oct-2.2 expression is induced during differentiation, and cells depleted of Oct-2 and its homolog Oct-1 have a reduced capacity to differentiate into neurons. Our results reveal a number of transcription factors potentially important for mammalian neuronal differentiation, and indicate that Oct-2 may serve as a binary switch to repress differentiation in precursor cells and induce neuronal differentiation later during neuronal development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Fator 2 de Transcrição de Octâmero/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Fases de Leitura Aberta , Transportador 1 de Cátions Orgânicos/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína , Proteínas Repressoras/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...